Regulation of epithelial transport and barrier function by distinct protein kinase C isoforms.
نویسندگان
چکیده
The phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibits Cl(-) secretion (short-circuit current, I(sc)) and decreases barrier function (transepithelial resistance, TER) in T84 epithelia. To elucidate the role of specific protein kinase C (PKC) isoenzymes in this response, we compared PMA with two non-phorbol activators of PKC (bryostatin-1 and carbachol) and utilized three PKC inhibitors (Gö-6850, Gö-6976, and rottlerin) with different isozyme selectivity profiles. PMA sequentially inhibited cAMP-stimulated I(sc) and decreased TER, as measured by voltage-current clamp. By subcellular fractionation and Western blot, PMA (100 nM) induced sequential membrane translocation of the novel PKC epsilon followed by the conventional PKC alpha and activated both isozymes by in vitro kinase assay. PKC delta was activated by PMA but did not translocate. By immunofluorescence, PKC epsilon redistributed to the basolateral domain in response to PMA, whereas PKC alpha moved apically. Inhibition of I(sc) by PMA was prevented by the conventional and novel PKC inhibitor Gö-6850 (5 microM) but not the conventional isoform inhibitor Gö-6976 (5 microM) or the PKC delta inhibitor rottlerin (10 microM), implicating PKC epsilon in inhibition of Cl(-) secretion. In contrast, both Gö-6976 and Gö-6850 prevented the decline of TER, suggesting involvement of PKC alpha. Bryostatin-1 (100 nM) translocated PKC epsilon and PKC alpha and inhibited cAMP-elicited I(sc). However, unlike PMA, bryostatin-1 downregulated PKC alpha protein, and the decrease in TER was only transient. Carbachol (100 microM) translocated only PKC epsilon and inhibited I(sc) with no effect on TER. Gö-6850 but not Gö-6976 or rottlerin blocked bryostatin-1 and carbachol inhibition of I(sc). We conclude that basolateral translocation of PKC epsilon inhibits Cl(-) secretion, while apical translocation of PKC alpha decreases TER. These data suggest that epithelial transport and barrier function can be modulated by distinct PKC isoforms.
منابع مشابه
Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes
Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملProtein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion.
The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 281 2 شماره
صفحات -
تاریخ انتشار 2001